
RudolF: An Open-Source Sandbox for increasing the accessibility of Functional Programming to
the Bioinformatics and Scientific Communities

Matthew Fenwick, Colbert Sesanker, Martin Schiller, Heidi JC Ellis, M. Lee Hinman, Jay Vyas,

Michael Gryk

University of Connecticut Health Center, 263 Farmington Avenue Farmington, Connecticut 06030

Abstract

Scientists are continually faced with the need to express
complex mathematical notions in code. The renaissance of
functional languages such as LISP and Haskell is often
credited to their ability to implement complex data opera-
tions and mathematical constructs in an expressive and
natural idiom. The slow adoption of functional computing
in the scientific community does not, however, reflect the
congeniality of these fields. Unfortunately, the learning
curve for adoption of functional programming techniques
is steeper than that for more traditional languages in the
scientific community, such as Python and Java, and this is
partially due to the relative sparseness of available learn-
ing resources. To fill this gap, we demonstrate and pro-
vide applied, scientifically substantial examples of func-
tional programming which we present as the multi-lan-
guage RudolF source-code repository for software integra-
tion and algorithm development, which generally focuses
on the fields of machine learning, data processing, bioin-
formatics. We encourage scientists who are interested in
learning the basics of functional programming to adopt,
reuse, and contribute to these examples. The source code
is available at: https://github.com/jayunit100/RudolF (see
also http://www.connjur.org).

Key Words: functional-programming; Clojure; Haskell;
Java; bioinformatics; NMR; LISP

Introduction

Scientists express complex mathematical constructs and
data translations in code. The modern age of science,
wherein data sources are increasingly distributed and data
types are increasingly complex, places unique demands on
scientific programmers. The renewal of interest in func-
tional programming languages in the past decade has en-
abled software engineering with increased modularity,
composability, and programmer efficiency in many analyti-
cal domains, due to the fact that functional approaches are
capable of “masking” the machine level implementation
data editing which is necessary for complex data processing
schemes [9]. The result is thus a natural, mathematical de-
piction of the way information flows through a particular
problem domain.

The fields of protein bioinformatics and structural biology
require integration of mathematical constructs, software li-
braries, and complex data structures that are difficult to ex-
press using conventional programming paradigms. Such
repositories can easily span 1000s of lines of procedural
code implementing complex operations matrix manipula-
tion, combinatorial comparisons, and iteration through se-
mantically dense data structures. Such endeavors are ideal-
ly suited to functional programming approaches: by hiding
the details of the underlying data structures and ma-
chine-level data operations, functional approaches to scien-
tific computing allows researchers to once again focus on
the actual problem domain which they are interested in ad-
dressing, rather than any non-essential “accidental” compu-
tational complexity.

This manuscript introduces a sandbox for learning how
these abstract concepts are applied to real world scientific
analysis and visualization. We introduce and exemplify
tidbits of the completely open-source RudolF source-code
repository, which aims to increase the accessibility of prac-
tical functional programming constructs applied to real-
world problems relevant to the bioinformatics community
in a language neutral environment.

First, to demonstrate the power of functional abstraction for
bioinformatics tasks, we describe its application to the defi-
nition of sample scheduling patterns of NMR for non-uni-
form data collection using Haskell (a purely functional lan-
guage). The ability to rapidly define and integrate com-
plex mathematical abstractions into the NMR sample
scheduling workflow demonstrates the power of Haskell for
implementing dynamic, experimental frameworks for
mathematical programming, and provides a template to
new researchers interested in abstracting the quantitative
logic of their codebase so that it is both maintainable as
well as easily modifiable.

Second, we also address one of the criticisms of functional
programming, which is that, although it is powerful and
expressive, there are libraries in other languages which do
not readily port to different platforms. To address this con-
cern, we exemplify the power and ease of integrating Clo-
jure with pre-existing bioinformatics libraries for the stan-
dard Java programming langauge. The portable, tight JVM

https://github.com/jayunit100/RudolF

integration that Clojure provides is demonstrated as a data
integration framework, interoperating with BioJava, a plot-
ting tool via the Incanter toolset, and also by molecular vi-
sualization, with the popular Jmol library. In short, these
provide scientists examples of how to accomplish powerful
data analysis and visualization tasks in a practical, but
functional, idiom using the Clojure language.

Active development of the RudolF sandbox is underway.
There are examples of both prototypical scripts which
briefly demonstrate important, less-known features of func-
tional languages (such as GUI design, remote data integra-
tion, and language interoperability), as well as production
ready code, which exemplify robust features of “real”
source repositories – such as standardized unit tests, depen-
dency management, and build automation.

We encourage contributions from programmers of different
backgrounds, including developers from the Clojure,
Haskell, Erlang, OCaml, and Ruby communities. Who are
interested in learning more about problem-solving in func-
tional programming, and applying their skills to complex
problems.

 There other existing examples, largely genome related, of
functional programming work in the open-source
bioinformatics community: The BioCaml project offers a
variety of parsers for different genomic file formats
(https://github.com/agarwal/biocaml), the official
BioClojure project, deals with analysis and visualization
of genomic data (https://github.com/jandot/bioclojure),
and the BioHaskell project (http://biohaskell.org/) offers
further analysis of genomic data. We expect that the
RudolF project, which focuses on protein bioinformatics
and machine learning, will instruct and prepare novice
scientists for in the practical aspects of functional
programming (unit testing, data integration,
visualization) where didactic resources are laking.

Haskell Sample Scheduler

Background

NMR -- Nuclear Magnetic Resonance -- spectroscopy is a
technique for collecting information about molecules. In
the context of protein spectroscopy, it is applied to collect
data which can be used to determine structure and
dynamics. NMR experiments collect data in
multidimensional (1 to 4 or more) grids, where each of the
dimensions represents time or a pseudo-time dimension.
Conventional experiments collect data evenly spaced, on-
grid data points. The total amount of time to complete a
data collection experiment depends on the number of points
collected; thus, experimental time grows very quickly with
the number of dimensions -- 4-dimensional experiments
can take days to fully complete.

Not only is this expensive to run the spectrometer for such
a long time, but there can also be negative consequences on

the quality of the sample: samples may not be stable for the
entire length of time required for the experiment, leading to
detrimental effects on data quality. An alternative to
uniform collection is non-uniform collection of on-grid data
points. This reduces the time necessary to complete the
experiment -- often, the time savings can be greater than
50% of the original experimental time. This technique has
already been successfully applied. Additional proposals
have shown the value of non-uniform collection in two
other areas: quadrature units [1] and number of transients.
Quadrature detection is used to distinguish between
positive/negative data; 2n quadrature units are typically
collected, where n is the number of dimensions. Non-
uniform transient collection refers to the practice of
collecting different points with different frequencies -- the
values can then be combined in a way that reduces noise.

There have been a large number of published algorithms
for generating various schemes of on-grid sampling.
However, the need for an integrated platform which unifies
these algorithms for the benefit of the programmer and user
has become evident recently, with the advent of non-
uniform quadrature detection and a renewed interest in
non-uniform transient collection. Additionally, there are
multiple spectrometer companies and tools for dealing with
non-uniform data; typically, each of these has a special
format -- another degree of complexity for the NMR
spectroscopist to deal with. The goal of this project is to
create such a platform which enables combination and
reuse of the various algorithms by means of a coherent and
complete data model.

Summary of Results

1) Data model of schedule

A data model was implemented in Haskell, as well as in
MySQL, an open-source Relational Database Management
System (RDBMS). A formal data model is necessary to
enable computerized use and interpretation of sample
schedules, as well as allowing researchers to easily share
and describe schedules. The model we describe is a
superset of existing, informal models; it provides additional
descriptive power for specifying more rich and complex
schedules and sampling schemes.

Specifically, the model includes support for non-uniform
quadrature detection and transient selection. These two
areas have been largely unexplored by NMR researchers.
However, the richness of our model allows a user of the
code to easily switch between uniform and non-uniform
settings for both quadrature and transients -- while
allowing continued use of traditional sampling schemes.

http://biohaskell.org/
https://github.com/jandot/bioclojure
https://github.com/agarwal/biocaml

Figure 1: a MySQLWorkbench data model of a
non-uniform sample schedule.

Basically, a sample schedule has an associated number of
dimensions which determines the dimensionality of the
grid points and quadrature units -- for example, a 1D
schedule has 1D grid points and quadrature units, a 2D
schedule has 2D points, and so on. Each unique
combination of grid point and quadrature unit is termed a
"point"; the number of times each point appears in the
schedule is the number of "transients". In database terms,
"point" + sample schedule identifier is the primary key of
the point table.

2) Model of schedule creation workflow

We break down schedule creation into three distinct steps:
schedule generation, point selection, and schedule
modification. Many schedules can be created solely with a
'generation' step. However, more complicated schedules
can not be expressed so simply; these are then expressed
with combinations of generation, selection, and
modification steps.

Figure 2: the process of building complex
sample schedules.

Generation: points from a grid and quadrature units are
combined to create a simple schedule. Also, the number of
transients is selected for each point; the current default is to
have one transient for each point, as non-uniform transient
selection can be achieved by different means. However,
this can easily be extended in future versions if desired.

Selection: points from a schedule are selected; this can
involve selection with or without replacement. If without
replacement, this operation will simply filter out some
points. If with replacement, this operation results in non-
uniformly transient detection. Additionally, there are
options, during the selection stage, to select all transients
together, all quadrature units of a grid point together, or all
separate, allowing maximum flexibility.

Modification: many schedules can be improved by adding
random noise, such as Gaussian blurring or bursty
selection. Such an operation would typically adjust all of
the points in a schedule in some way without removing any
directly [2, 3].

Such a conceptualization of schedule creation provides
maximum expressiveness, allowing a user to easily create
schedules that would otherwise involve a large amount of
work. (give examples where this is useful -- for instance,
allLowerBounds)

3) Integrated, interactive environment for creation,
evaluation of schedules

Loading the code into the Haskell interpreter (GHCi)
allows the user to interactively create, view, and analyze
sample schedules. The combination of data model and
useful functions allows analysis of schedules at a very high
level, while the interpreter allows flexible experimentation
and combination with a variety of algorithms, allowing a
user to identify potentially useful workflows, which can

then be more robustly coded at a later time. The very low
barrier of entry to creating and examining various sample
schedules saves the NMR spectroscopist time.

4) Example schedules

Bundled with the code are a number of example sample
schedules of practical interest to an NMR spectroscopist,
including schedules demonstrating the Halton sub-random
sampling scheme, exponential sampling scheme, non-
uniform transients selection, non-uniform quadrature
selection, and uniform grid sampling scheme. In addition
to these schedules, the code/data used to create them is
given, both as code, and as JSON configuration files.

5) Flexible export options -- schedule formatting

The code includes many options for schedule output,
including all those used by common spectrometer
companies, as well as the Rowland Toolkit, and a custom
column-based format including transients, and a custom,
unambiguous JSON format for explicit automated data
transfer and sharing, possibly with other programs or
through web services.

6) Implementation

This project was implemented using a purely functional
programming language for a number of reasons. Haskell's
rich type system facilitates type-safe programming at a very
high level, which results in code that is more general,
easier to comprehend, and much shorter. In many cases,
complex algorithms were easy to implement and easy to
read and understand once the project reached the
maintenance phase. Additionally, the richness of its type
system catches a whole host of typing errors at compile-
time rather than at run-time -- allowing the programmer to
have much more confidence in the quality of his/her code.
Due to its nature as a functional language, Haskell code is
inherently testable; additionally, an easily available Haskell
library known as QuickCheck provides a very robust means
of testing properties of code.

7) Future goals

The main future goal of this project is an application for
creating sample schedules, usable from the command line
or a Graphical User Interface (GUI). User-defined
parameters, in a JSON-formatted text file or from the GUI,
would be passed in to the program, which then uses the
parameters to create and execute a schedule workflow.
Errors could occur either when reading the parameters, or
when executing the workflow; they would then be reported
to the user in place of a schedule. The schedule may be
output in any of a number of formats, including Varian and
Bruker. The major advantage of using JSON parameter
files is the ease of sharing, creating, and analyzing the
parameters, due to the prevalence of JSON as a data format.

Figure 3: the flow of execution in the proposed
sample scheduler functional program.

Java, LISP, and Bioinformatics : Three worlds
Collide

The flexible and expressive nature of LISP languages have
engendered support from theoretical computer scientists for
several decades. In particular, the ability to customize
LISP syntax for particular, domain specific problems has
been leveraged in several domains. However, the lack of a
standard platform for installing, learning, and using LISP
has been a barrier to adoption in other areas. The emer-
gence of the Clojure programming language, which is free,
open source, and well supported, has changed this para-
digm, enabling a JVM ready platform for building applica-
tions which can leverage the expressiveness of LISP with a
lower barrier to entry.

One particular area of interest in our group has been inte-
grated protein bioinformatics. We have previously de-
ployed applications [4] which leverage the CONNJUR
framework [5] for data integration, the BioJava library [6]
for analyzing proteins sequences and structures, as well as
the Jmol tool [7] for molecular visualization. One of the
concerns that small laboratories face in designing large,
data driven applications is the maintenance of their code
base, which can grow quite rapidly. Such applications can

benefit from not only the wide variety of numerical and sci-
entific libraries available in mainstream languages (such
as Java, C++, Perl, and Python), but also the conciseness
and abstractness of functional code. Clojure provides a
unique combination between availability of libraries and ac-
cessibility of function paradigms.

Figure 4: a plot of chemical shift of CA atom vs.
residue number, created with Clojure, Incanter.

In order to exemplify the Clojure language for solving and
integrating domain specific problems, we have deployed
several examples of the integration of Clojure with the pop-
ular BioJava library for protein bioinformatics. For exam-
ple, the RudolF source tree includes examples of how to re-
motely and integrate and test the functionality of BioJava
into a Clojure project, examples of how to load, parse, and
visualize protein structures from the PDB in just a few lines
of code using the LISP-like syntax of Clojure, and the basic
elements of data visualization for NMR-derived protein
chemical shift data, by virtue of the Incanter library for data
plotting.

Included are screen shots, and code snippets, which exem-
plify the expressive and functional nature of these opera-
tions - along with the robustness of the Clojure platform for
integrating with real, computationally intensive Java pro-
cesses at the API level. The ability to utilize Clojure in this
context will open up new venues for the penetration of
functional programming concepts into the Bioinformatics
community, while also showcasing the ability of modern
LISP dialects to satisfy the multidimensional requirements
of the modern scientific programmer - who must not only
design new algorithms, but also engineer solutions for
maintaining and visualizing the implementation of such
constructs.

Figure 5: a plot of color-mapped chemical shift
values, created with Clojure, BioJava and Jmol.

Since Clojure is Java-based, we are able to quickly and eas-
ily package the source code into executable .jar files, which
can be run by any computer equipped with the Java Virtual
Machine (JVM) 1.6 or higher. This was accomplished us-
ing the 'leiningen' build tool for dependency management
and project builds.

 A Clojure Amino Acid Predictor

Background

The Clojure Amino Acid Predictor is a machine learning
algorithm based on a binary Support Vector Machine
(SVM) . In binary SVM algorithms, examples are repre-
sented by sparse vectors, in Rn,where each entry of the vec-
tor holds the value of a feature, corresponding to the index
of the entry. For example, if one is trying to categorize a set
of journal abstracts into one of two classes, biology and as-
tronomy, the abstracts represent examples and selected key-
words in the abstract, corresponding to each index of the
sparse vector, could represent features. The frequency of
keywords in the abstracts represent the values at the feature
index in the sparse example vector. The learning model, f ,
learns to associate each sparse vector, X = (x1 , x2 , . . . xn),
with either the positive class, f(X) > 0, or the negative
class, f(X) < 0, via the mapping f : X → Y , Y = {-1 , +1},
where elements in the negative class are assigned to -1 and
elements in the positive class are assigned to +1. The model
learns by maximizing its projection (minimizing the L2

norm) onto elements in the positive class via the inner
product. It gets closer to elements in the positive class, and
further from elements in to negative class, gradually parti-
tioning Rn, into two disjoint sets bounded by a hyperplane;

positive examples are on one side of the hyperplane and
negative examples on the other [8].

Design

The essence of the Clojure Amino Acid Predictor is to treat
a neighborhood, e.g., “GLAMS”, centered about an amino
acid of interest, in this case A, as an example and define
features about A in that neighborhood. Neighborhoods rep-
resent the decomposition of a peptide sequence into local
examples and know nothing about other examples extracted
from the sequence. We teach our model to guess the center
of a neighborhood given inner, LM, and outer, GS, neigh-
bors (in the example neighborhood of “GLAMS”). To dis-
tinguish inner from outer neighbors a “1” is appended to
inner neighbors, LM → LM1, and a “2” is appended to out-
er neighbors, GS → GS2. Neighborhoods capture local in-
formation about each amino-acid, and we train our SVM
classifier to recognize this information. We experiment
with defining different features and neighborhoods; we as-
pire to develop more sophisticated neighborhoods and fea-
tures for improved classification.

This project makes liberal use of Clojure's lazy sequence
evaluation, combining infinite and finite lists as exempli-
fied in this short and expressive code snippet:

In these three lines of code, we create a map, protein-

neighborhood, of all 21*21*2 = 882 possible inner and
outer neighbors given a 21 letter alphabet of amino acids;
each inner/outer neighbor is indexed from 0-881.
protein-neighbors is a list of all ordered, 21*21= 441,
pairs of amino acids in tuple format. The function
stringseq-tuple turns this list of tuples into a list of
ordered strings while stringseq lazily concatenates each
element of the ordered string list with an infinite sequence
of ones. The map, protein-neighborhood, can also be used
a function that returns the index of an inner/outer
neighbor:

(get-protein-neighbor-index “LS1”) returns 783, the index
for the inner neighbor LS1. Now, the idea is to take a
peptide sequence and find all the neighbors, a
straightforward implementation of regular expressions in
Clojure:

This function returns all the neighborhoods centered
about A in a peptide sequence. For Instance, calling the
function target-neighbors on the sequence

“LMAGSAPW. . .” yields the sequence of neighborhoods
(“LMAGS” “GSAPW” . . .) . In addition, negative
neighborhoods, examples in the negative class, are
generated identically to target-neighbors except the
regular expression "..[^A].." is used in place of "..
[A].." to match all the neighborhoods centered around
every amino acid except A. These error neighborhoods
train the model to avoid examples not associated with
features centered around A.

Rationale and Future Work

The use of Clojure in a computationally extensive
machine learning task evidences its potential as an
alternative to mainstream languages such as C++ for the
computational science community. Clojure's core library
of functions, lazy sequences, expressiveness, and
emphasis on functional code allow for easy parsing of
files, implementation of numerical procedures and
parallel computation. We are currently devising strategies
for exploiting Clojure's support for parallelism to
transform the Amino Acid Predictor into a multi-classifier
by running multiple binary classification problems in
parallel for different amino acids. The Hadoop framework
offers tools to make this parallelism easier and more
efficient. We are also investigating feature extraction
techniques; in particular, Non-Negative Matrix
factorization, to reduce the dimensionality of the example
space far below all possible orderings of the features we
choose to define in our neighborhood. The end goal of
the of this project is to create an application that reads a
training set of FASTA peptide sequence files and learns
to predict amino acid gaps in new proteins related to the
training set proteins.

RudolF on the web

The source code is free and open source, and available on
our github page at https://github.com/jayunit100/RudolF.
Contributions of any kind, including suggestions,
documentation support, testing, and new languages or
algorithm sandbox implementations, are welcomed and
encouraged.

Methods

We used the command-line tool `git`, to provide local
source control capabilities, together with github for remote,
shared, and distributed source control between members of
the group. For java dependency management and project
builds, we have employed `leiningen`, a script specifically
targeted at Clojure, and built on top of maven, for such
tasks.

https://github.com/jayunit100/RudolF

The Future of Bioinformatics and Functional
Programming

Through this paper, we hope to establish the practicality,
value and usefulness of functional programming to the
bioinformatics and NMR communities and to the scientific
programming community at large. It is our belief that the
inherent advantages of functional programming will lead it
to continue to grow in popularity in the coming years; we
hope that project RudolF will provide guidance, motivation,
and a place of learning for computing scientists interested
in learning about and applying the benefits of functional
programming to biologically relevant problems.

RudolF is named after the popular reindeer RudolF, who,
although initially mocked by his peers, was ultimately ca-
pable of guiding Santa's sleigh through the dark, wintery
skies on Christmas eve. Functional programming enthusi-
asts will certainly identify with this metaphor.

References

1) Mark W. Maciejewski, Matthew Fenwick, Adam D.
Schuyler, Alan S. Stern, Vitaliy Gorbatyuk, and Jeffrey C.
Hoch. Random phase detection in multidimensional NMR.
PNAS vol. 108 no. 40, 2011. p. 16640 – 16644.

2) Jeffrey C. Hoch, Mark W. Maciejewski, Blagoje
Filipovic. Randomization improves sparse sampling in
multidimensional NMR. Journal of Magnetic Resonance,
vol 183, no. 2, 2008, p. 317-320.

3) Mark W. Maciejewski, Harry Z. Qui, Iulian Rujan,
Mehdi Mobli, Jeffrey C. Hoch. Nonuniform sampling and
spectral aliasing. Journal of Magnetic Resonance, vol 199,
no. 1, 2009, p. 88-93.

4) Jay Vyas, Michael R. Gryk and Martin R. Schiller.
VENN, a tool for titrating sequence conservation onto
protein structures. Nucleic Acids Research, vol. 37, no. 18,
2009

5) Ronald J. Nowling, Jay Vyas, Gerard Weatherby,
Matthew W. Fenwick, Heidi J. C. Ellis and Michael R.
Gryk. CONNJUR spectrum translator: an open source
application for reformatting NMR spectral data. Journal of
Biomolecular NMR vol 50, no. 1, 2011, p. 83-89

6) R. C. G. Holland, T. A. Down, M. Pocock, A. Prlic, D.
Huen, K. James, S. Foisy, A. Drager, A. Yates, M. Heuer
and M. J. Schreiber. BioJava: an open-source framework
for bioinformatics. Bioinformatics vol 24, no. 18, 2008

7) Jmol: an open-source Java viewer for chemical structures
in 3D. http://www.jmol.org/

8) Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro.
Pegasos: Primal Estimated sub-GrAdient Solver for SVM.
24th International Conference on Machine Learning,
Corvallis, OR, 2007.

9) Konrad Hinsen. The Promises of Functional
Programing. Computing in Science & Engineering,
July/August 2009, pp. 86 –90.

	Haskell Sample Scheduler
	5) Ronald J. Nowling, Jay Vyas, Gerard Weatherby, Matthew W. Fenwick, Heidi J. C. Ellis and Michael R. Gryk. CONNJUR spectrum translator: an open source application for reformatting NMR spectral data. Journal of Biomolecular NMR vol 50, no. 1, 2011, p. 83-89

