
RudolF: An Open-Source Sandbox for increasing the accessibility of Functional Programming to 
the Bioinformatics and Scientific Communities

Matthew Fenwick, Colbert Sesanker, Martin Schiller, Heidi JC Ellis, M. Lee Hinman, Jay Vyas, 

Michael Gryk 

University of Connecticut Health Center, 263 Farmington Avenue Farmington, Connecticut 06030

Abstract

Scientists are continually faced with the need to express  
complex mathematical notions in code.  The renaissance of  
functional languages such as LISP and Haskell is often  
credited to their ability to implement complex data opera-
tions and mathematical constructs in an expressive and  
natural idiom.  The slow adoption of functional computing  
in the scientific community does not, however, reflect the  
congeniality of these fields.  Unfortunately, the learning  
curve for adoption of functional programming techniques  
is steeper than that for more traditional languages in the  
scientific community, such as Python and Java, and this is  
partially due to the relative sparseness of available learn-
ing resources.  To fill this gap, we demonstrate and pro-
vide applied, scientifically substantial examples of func-
tional programming which we present as the multi-lan-
guage RudolF source-code repository for software integra-
tion and algorithm development, which generally focuses  
on the fields of machine learning, data processing, bioin-
formatics.  We encourage scientists who are interested in  
learning the basics of functional programming to adopt,  
reuse, and contribute to these examples.  The source code  
is available at: https://github.com/jayunit100/RudolF  (see 
also http://www.connjur.org).

Key Words:  functional-programming; Clojure; Haskell; 
Java; bioinformatics; NMR; LISP

Introduction

Scientists  express  complex  mathematical  constructs  and 
data  translations  in  code.   The  modern  age  of  science, 
wherein data sources are increasingly distributed and data 
types are increasingly complex, places unique demands on 
scientific programmers.   The renewal  of interest  in  func-
tional  programming  languages in  the past  decade has en-
abled  software  engineering  with  increased  modularity, 
composability, and programmer efficiency in many analyti-
cal domains, due to the fact that functional approaches are 
capable  of  “masking”  the  machine  level  implementation 
data editing which is necessary for complex data processing 
schemes [9].  The result is thus a natural, mathematical de-
piction of the way information flows through a particular  
problem domain.  

The fields of protein bioinformatics and structural  biology 
require integration of mathematical constructs, software li-
braries, and complex data structures that are difficult to ex-
press  using  conventional  programming  paradigms.   Such 
repositories  can  easily span  1000s  of lines  of procedural 
code implementing  complex operations  matrix  manipula-
tion, combinatorial  comparisons, and iteration through se-
mantically dense data structures.  Such endeavors are ideal-
ly suited to functional programming approaches: by hiding 
the  details  of  the  underlying  data  structures  and  ma-
chine-level data operations, functional approaches to scien-
tific computing allows researchers  to once again  focus on 
the actual problem domain which they are interested in ad-
dressing, rather than any non-essential “accidental” compu-
tational complexity.

This  manuscript  introduces  a  sandbox  for  learning  how 
these abstract concepts are applied to real  world scientific 
analysis  and  visualization.   We introduce  and  exemplify 
tidbits  of the  completely open-source RudolF source-code 
repository, which aims to increase the accessibility of prac-
tical  functional  programming  constructs  applied  to  real-
world problems relevant  to the bioinformatics community 
in a language neutral environment.  

First, to demonstrate the power of functional abstraction for 
bioinformatics tasks, we describe its application to the defi-
nition of sample scheduling patterns of NMR for non-uni-
form data collection using Haskell (a purely functional lan-
guage).    The ability to rapidly define and integrate com-
plex  mathematical  abstractions  into  the  NMR  sample 
scheduling workflow demonstrates the power of Haskell for 
implementing  dynamic,  experimental  frameworks  for 
mathematical  programming,  and  provides  a  template  to 
new researchers  interested  in  abstracting  the  quantitative 
logic of their  codebase so that  it  is  both maintainable  as 
well as easily modifiable.

Second, we also address one of the criticisms of functional  
programming,  which  is  that,  although  it  is  powerful  and 
expressive, there are libraries in other languages which do 
not readily port to different platforms.  To address this con-
cern, we exemplify the power and ease of integrating Clo-
jure with pre-existing bioinformatics libraries for the stan-
dard Java programming langauge.  The portable, tight JVM 

https://github.com/jayunit100/RudolF


integration that Clojure provides is demonstrated as a data 
integration framework, interoperating with BioJava, a plot-
ting tool via the Incanter toolset, and also by molecular vi-
sualization, with the popular Jmol library.  In short, these 
provide scientists examples of how to accomplish powerful 
data  analysis  and  visualization  tasks  in  a  practical,  but 
functional, idiom using the Clojure language.

Active development  of the  RudolF sandbox is  underway. 
There  are  examples  of  both  prototypical  scripts  which 
briefly demonstrate important, less-known features of func-
tional languages (such as GUI design, remote data integra-
tion, and language interoperability), as well as production 
ready  code,  which  exemplify  robust  features  of  “real” 
source repositories – such as standardized unit tests, depen-
dency management, and build automation. 

We encourage contributions from programmers of different 
backgrounds,  including  developers  from  the  Clojure, 
Haskell, Erlang, OCaml, and Ruby communities. Who are 
interested in learning more about problem-solving in func-
tional  programming,  and  applying their  skills  to complex 
problems.

 There other existing examples, largely genome related, of 
functional programming work in the open-source 
bioinformatics community:  The BioCaml project offers a 
variety of parsers for different genomic file formats 
(https://github.com/agarwal/biocaml), the official 
BioClojure project,  deals with analysis and visualization 
of genomic data (https://github.com/jandot/bioclojure), 
and the BioHaskell project (http://biohaskell.org/) offers 
further analysis of genomic data. We expect that the 
RudolF project, which focuses on protein bioinformatics 
and machine learning, will instruct and prepare novice 
scientists for in the practical aspects of functional 
programming (unit testing, data integration, 
visualization)  where didactic resources are laking.

Haskell Sample Scheduler

Background

NMR -- Nuclear Magnetic Resonance -- spectroscopy is a 
technique for collecting information about molecules.  In 
the context of protein spectroscopy, it is applied to collect 
data which can be used to determine structure and 
dynamics. NMR experiments collect data in 
multidimensional (1 to 4 or more) grids, where each of the 
dimensions represents time or a pseudo-time dimension. 
Conventional experiments collect data evenly spaced, on-
grid data points.  The total amount of time to complete a 
data collection experiment depends on the number of points 
collected; thus, experimental time grows very quickly with 
the number of dimensions -- 4-dimensional experiments 
can take days to fully complete.

Not only is this expensive to run the spectrometer for such 
a long time, but there can also be negative consequences on 

the quality of the sample:  samples may not be stable for the 
entire length of time required for the experiment, leading to 
detrimental effects on data quality.  An alternative to 
uniform collection is non-uniform collection of on-grid data 
points.  This reduces the time necessary to complete the 
experiment -- often, the time savings can be greater than 
50% of the original experimental time.  This technique has 
already been successfully applied.  Additional proposals 
have shown the value of non-uniform collection in two 
other areas:  quadrature units [1] and number of transients. 
Quadrature detection is used to distinguish between 
positive/negative data; 2n quadrature units are typically 
collected, where n is the number of dimensions.  Non-
uniform transient collection refers to the practice of 
collecting different points with different frequencies -- the 
values can then be combined in a way that reduces noise.

There have been a large number of published algorithms 
for generating various schemes of on-grid sampling. 
However, the need for an integrated platform which unifies 
these algorithms for the benefit of the programmer and user 
has become evident recently, with the advent of non-
uniform quadrature detection and a renewed interest in 
non-uniform transient collection.  Additionally, there are 
multiple spectrometer companies and tools for dealing with 
non-uniform data; typically, each of these has a special 
format -- another degree of complexity for the NMR 
spectroscopist to deal with.  The goal of this project is to 
create such a platform which enables combination and 
reuse of the various algorithms by means of a coherent and 
complete data model.

Summary of Results

1) Data model of schedule

A data model was implemented in Haskell, as well as in 
MySQL, an open-source Relational Database Management 
System (RDBMS).   A formal data model is necessary to 
enable computerized use and interpretation of sample 
schedules, as well as allowing researchers to easily share 
and describe schedules.  The model we describe is a 
superset of existing, informal models; it provides additional 
descriptive power for specifying more rich and complex 
schedules and sampling schemes.

Specifically, the model includes support for non-uniform 
quadrature detection and transient selection.  These two 
areas have been largely unexplored by NMR researchers. 
However, the richness of our model allows a user of the 
code to easily switch between uniform and non-uniform 
settings for both quadrature and transients -- while 
allowing continued use of traditional sampling schemes.

http://biohaskell.org/
https://github.com/jandot/bioclojure
https://github.com/agarwal/biocaml


Figure 1: a MySQLWorkbench data model of a  
non-uniform sample schedule.

Basically, a sample schedule has an associated number of 
dimensions which determines the dimensionality of the 
grid points and quadrature units -- for example, a 1D 
schedule has 1D grid points and quadrature units, a 2D 
schedule has 2D points, and so on.  Each unique 
combination of grid point and quadrature unit is termed a 
"point"; the number of times each point appears in the 
schedule is the number of "transients".  In database terms, 
"point" + sample schedule identifier is the primary key of 
the point table.

2) Model of schedule creation workflow

We break down schedule creation into three distinct steps: 
schedule generation, point selection, and schedule 
modification.  Many schedules can be created solely with a 
'generation' step.  However, more complicated schedules 
can not be expressed so simply; these are then expressed 
with combinations of generation, selection, and 
modification steps.

Figure 2: the process of building complex 
sample schedules.

Generation:  points from a grid and quadrature units are 
combined to create a simple schedule.  Also, the number of 
transients is selected for each point; the current default is to 
have one transient for each point, as non-uniform transient 
selection can be achieved by different means.  However, 
this can easily be extended in future versions if desired.

Selection:  points from a schedule are selected; this can 
involve selection with or without replacement.  If without 
replacement, this operation will simply filter out some 
points.  If with replacement, this operation results in non-
uniformly transient detection.  Additionally, there are 
options, during the selection stage, to select all transients 
together, all quadrature units of a grid point together, or all 
separate, allowing maximum flexibility.

Modification:  many schedules can be improved by adding 
random noise, such as Gaussian blurring or bursty 
selection.  Such an operation would typically adjust all of 
the points in a schedule in some way without removing any 
directly [2, 3]. 

Such a conceptualization of schedule creation provides 
maximum expressiveness, allowing a user to easily create 
schedules that would otherwise involve a large amount of 
work.  (give examples where this is useful -- for instance, 
allLowerBounds)

3) Integrated, interactive environment for creation, 
evaluation of schedules

Loading the code into the Haskell interpreter (GHCi) 
allows the user to interactively create, view, and analyze 
sample schedules.  The combination of data model and 
useful functions allows analysis of schedules at a very high 
level, while the interpreter allows flexible experimentation 
and combination with a variety of algorithms, allowing a 
user to identify potentially useful workflows, which can 



then be more robustly coded at a later time.  The very low 
barrier of entry to creating and examining various sample 
schedules saves the NMR spectroscopist time.

4) Example schedules

Bundled with the code are a number of example sample 
schedules of practical interest to an NMR spectroscopist, 
including schedules demonstrating the Halton sub-random 
sampling scheme, exponential sampling scheme, non-
uniform transients selection, non-uniform quadrature 
selection, and uniform grid sampling scheme.  In addition 
to these schedules, the code/data used to create them is 
given, both as code, and as JSON configuration files.

5) Flexible export options -- schedule formatting

The code includes many options for schedule output, 
including all those used by common spectrometer 
companies, as well as the Rowland Toolkit, and a custom 
column-based format including transients, and a custom, 
unambiguous JSON format for explicit automated data 
transfer and sharing, possibly with other programs or 
through web services.

6) Implementation

This project was implemented using a purely functional 
programming language for a number of reasons.  Haskell's 
rich type system facilitates type-safe programming at a very 
high level, which results in code that is more general,  
easier to comprehend, and much shorter.  In many cases, 
complex algorithms were easy to implement and easy to 
read and understand once the project reached the 
maintenance phase.  Additionally, the richness of its type 
system catches a whole host of typing errors at compile-
time rather than at run-time -- allowing the programmer to 
have much more confidence in the quality of his/her code. 
Due to its nature as a functional language, Haskell code is 
inherently testable; additionally, an easily available Haskell 
library known as QuickCheck provides a very robust means 
of testing properties of code.

7) Future goals

The main future goal of this project is an application for 
creating sample schedules, usable from the command line 
or a Graphical User Interface (GUI).  User-defined 
parameters, in a JSON-formatted text file or from the GUI, 
would be passed in to the program, which then uses the 
parameters to create and execute a schedule workflow. 
Errors could occur either when reading the parameters, or 
when executing the workflow; they would then be reported 
to the user in place of a schedule.  The schedule may be 
output in any of a number of formats, including Varian and 
Bruker.  The major advantage of using JSON parameter 
files is the ease of sharing, creating, and analyzing the 
parameters, due to the prevalence of JSON as a data format.

Figure 3: the flow of execution in the proposed 
sample scheduler functional program.

Java, LISP, and Bioinformatics : Three worlds 
Collide

The flexible and expressive nature of LISP languages have 
engendered support from theoretical computer scientists for 
several decades.  In particular, the ability to customize 
LISP syntax for particular, domain specific problems has 
been leveraged in several domains.  However, the lack of a 
standard platform for installing, learning, and using LISP 
has been a barrier to adoption in other areas.  The emer-
gence of the Clojure programming language, which is free, 
open source, and well supported, has changed this para-
digm, enabling a JVM ready platform for building applica-
tions which can leverage the expressiveness of LISP with a 
lower barrier to entry.  

One particular area of interest in our group has been inte-
grated protein bioinformatics.  We have previously de-
ployed applications [4] which leverage the CONNJUR 
framework [5] for data integration, the BioJava library [6] 
for analyzing proteins sequences and structures, as well as 
the Jmol tool [7] for molecular visualization.  One of the 
concerns that small laboratories face in designing large, 
data driven applications is the maintenance of their code 
base, which can grow quite rapidly.  Such applications can 



benefit from not only the wide variety of numerical and sci-
entific libraries  available in mainstream languages (such 
as Java, C++, Perl, and Python), but also the conciseness 
and abstractness of functional code.  Clojure provides a 
unique combination between availability of libraries and ac-
cessibility of function paradigms.
 

Figure 4: a plot of chemical shift of CA atom vs.  
residue number, created with Clojure, Incanter.

In order to exemplify the Clojure language for solving and 
integrating domain specific problems, we have deployed 
several examples of the integration of Clojure with the pop-
ular BioJava library for protein bioinformatics.  For exam-
ple, the RudolF source tree includes examples of how to re-
motely and integrate and test the functionality of BioJava 
into a Clojure project, examples of how to load, parse, and 
visualize protein structures from the PDB in just a few lines 
of code using the LISP-like syntax of Clojure, and the basic 
elements of data visualization for NMR-derived protein 
chemical shift data, by virtue of the Incanter library for data 
plotting.  

Included are screen shots, and code snippets, which exem-
plify the expressive and functional nature of these opera-
tions - along with the robustness of the Clojure platform for 
integrating with real, computationally intensive Java pro-
cesses at the API level.  The ability to utilize Clojure in this 
context will open up new venues for the penetration of 
functional programming concepts into the Bioinformatics 
community, while also showcasing the ability of modern 
LISP dialects to satisfy the multidimensional requirements 
of the modern scientific programmer - who must not only 
design new algorithms, but also engineer solutions for 
maintaining and visualizing the implementation of such 
constructs.

Figure 5: a plot of color-mapped chemical shift  
values, created with Clojure, BioJava and Jmol.

Since Clojure is Java-based, we are able to quickly and eas-
ily package the source code into executable .jar files, which 
can be run by any computer equipped with the Java Virtual 
Machine (JVM) 1.6 or higher.  This was accomplished us-
ing the 'leiningen' build tool for dependency management 
and project builds.

 A Clojure Amino Acid Predictor

Background

The Clojure Amino Acid Predictor is a machine learning 
algorithm based on a binary Support Vector Machine 
(SVM) . In binary SVM algorithms, examples are repre-
sented by sparse vectors, in Rn,where each entry of the vec-
tor holds the value of a feature, corresponding to the index 
of the entry. For example, if one is trying to categorize a set 
of journal abstracts into one of two classes, biology and as-
tronomy, the abstracts represent examples and selected key-
words in the abstract, corresponding to each index of the 
sparse vector, could represent features. The frequency of 
keywords in the abstracts represent the values at the feature 
index in the sparse example vector. The learning model, f , 
learns to associate each sparse vector, X = (x1 , x2 , . . . xn ), 
with either the positive class, f(X) > 0, or the negative 
class,  f(X) < 0, via the mapping f : X → Y , Y = {-1 , +1}, 
where elements in the negative class are assigned to -1 and 
elements in the positive class are assigned to +1. The model 
learns by maximizing its projection (minimizing the L2 

norm) onto elements in the positive class via the inner 
product. It gets closer to elements in the positive class, and 
further from elements in to negative class, gradually parti-
tioning  Rn, into two disjoint sets bounded by a hyperplane; 



positive examples are on one side of the hyperplane and 
negative examples on the other [8].

Design

The essence of the Clojure Amino Acid Predictor is to treat 
a neighborhood, e.g., “GLAMS”, centered about an amino 
acid of interest, in this case A, as an example and define 
features about A in that neighborhood. Neighborhoods rep-
resent the decomposition of a peptide sequence into local 
examples and know nothing about other examples extracted 
from the sequence. We teach our model to guess the center 
of a neighborhood given inner, LM, and outer, GS, neigh-
bors (in the example neighborhood of “GLAMS”).  To dis-
tinguish inner from outer neighbors a “1” is appended to 
inner neighbors, LM → LM1, and a “2” is appended to out-
er neighbors, GS → GS2.  Neighborhoods capture local in-
formation about each amino-acid, and we train our SVM 
classifier to recognize this information.  We experiment 
with defining different features and neighborhoods; we as-
pire to develop more sophisticated neighborhoods and fea-
tures for improved classification. 

This project makes liberal use of Clojure's lazy sequence 
evaluation, combining infinite and finite lists as exempli-
fied in this short and expressive code snippet:

In these three lines of code, we create a map,  protein-

neighborhood, of all 21*21*2 = 882 possible inner and 
outer neighbors given a 21 letter alphabet of amino acids; 
each inner/outer neighbor is indexed from 0-881. 
protein-neighbors is a list of  all ordered,  21*21= 441, 
pairs of amino acids in tuple format. The function 
stringseq-tuple  turns this list of tuples into a list of 
ordered strings while stringseq  lazily concatenates each 
element of the ordered string list with an infinite sequence 
of ones.  The map, protein-neighborhood, can also be used 
a function that returns the index of an  inner/outer 
neighbor: 

(get-protein-neighbor-index “LS1”) returns 783, the index 
for the inner neighbor LS1. Now, the idea is to take a 
peptide sequence and find all the neighbors, a 
straightforward implementation of regular expressions in 
Clojure: 

This function returns all the neighborhoods centered 
about A in a peptide sequence. For Instance, calling the 
function target-neighbors on the sequence 

“LMAGSAPW. . .” yields  the  sequence of neighborhoods 
(“LMAGS”  “GSAPW” . . .) .  In addition, negative 
neighborhoods, examples in the negative class, are 
generated identically to  target-neighbors except the 
regular expression "..[^A].." is used in place of  "..
[A].." to match all the neighborhoods centered around 
every amino acid except A. These error neighborhoods 
train the model to avoid examples not associated with 
features centered around A.

Rationale and Future Work

The use of Clojure in a computationally extensive 
machine learning task evidences its potential as an 
alternative to mainstream languages such as C++ for the 
computational science community. Clojure's core library 
of functions, lazy sequences, expressiveness, and 
emphasis on functional code allow for easy parsing of 
files, implementation of numerical procedures and 
parallel computation. We are currently devising strategies 
for exploiting Clojure's support for parallelism to 
transform the Amino Acid Predictor into a multi-classifier 
by running multiple binary classification problems in 
parallel for different amino acids. The Hadoop framework 
offers tools to make this parallelism easier and more 
efficient. We are also investigating feature extraction 
techniques; in particular, Non-Negative Matrix 
factorization, to reduce the dimensionality of the example 
space far below all possible orderings of the features we 
choose to define in our neighborhood.  The end goal of 
the of this project is to create an application that reads a 
training set of  FASTA peptide sequence files and learns 
to predict amino acid gaps in new proteins related to the 
training set proteins. 

RudolF on the web

The source code is free and open source, and available on 
our github page at https://github.com/jayunit100/RudolF. 
Contributions of any kind, including suggestions, 
documentation support, testing, and new languages or 
algorithm sandbox implementations, are welcomed and 
encouraged.

Methods

We used the command-line tool `git`, to provide local 
source control capabilities, together with github for remote, 
shared, and distributed source control between members of 
the group.  For java dependency management and project 
builds, we have employed `leiningen`, a script specifically 
targeted at Clojure, and built on top of maven, for such 
tasks.

https://github.com/jayunit100/RudolF


The Future of Bioinformatics and Functional 
Programming

Through this paper, we hope to establish the practicality, 
value and usefulness of functional programming to the 
bioinformatics and NMR communities and to the scientific 
programming community at large.  It is our belief that the 
inherent advantages of functional programming will lead it 
to continue to grow in popularity in the coming years; we 
hope that project RudolF will provide guidance, motivation, 
and a place of learning for computing scientists interested 
in learning about and applying the benefits of functional 
programming to biologically relevant problems.

RudolF is named after the popular  reindeer RudolF, who, 
although initially mocked by his peers, was ultimately ca-
pable of guiding Santa's  sleigh through the dark,  wintery 
skies on Christmas eve.  Functional programming enthusi-
asts will certainly identify with this metaphor.
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