An introduction to NSM-Console

Matthew Lee Hinman

March 8, 2008

1 Abstract

With the proliferation of dozens of different packet analysis tools, a network
traffic analyst has a dizzying amount of tools to choose from to analyze
network data. As the number of tools will only increase, a framework to
unite and manage each of these tools is necessary. This framework should
provide a central and unified way to change the options for each of the
tools. My solution to this problem is NSM-Console, or the Network Security
Monitoring Console.

2 Introduction

NSM-Console was born from a discussion on IRC when Geek00l and I were
discussing the best way to provide an automate-able, simple, and power-
ful way to combine different network analysis tools into a framework that
would appeal to both the inexperienced and experienced analysts. After a
large amount of discussion, we decided that a modular framework written
in portable code would be the best solution to this problem.

NSM-Console is written entirely in Ruby, which allows for the frame-
work to be as portable as possible, while still being extremely powerful and
easy to develop. Since there is no performance requirement, a scripting lan-
guage works perfectly (Ruby is one of the slower languages compared to
alternatives like C, Python or Perl).

Rather than rewriting tools that already exist and work extremely well,
NSM-Console is designed to encapsulate different tools (called modules) into
a framework, allowing for easy configuration and automation. A module can
be created around any executable installed on a system, some examples of
modules that have already been created are: tcpdstat, tshark, aimsnarf,
chaosreader, foremost, ngrep, tcpflow, argus, clamscan, pOf, bro-ids, pads,
teptrace, capinfos, honeysnap, snort and tcpxtract. NSM-Console was later
extended with built-in tools and commands to aid in further analysis of
network traffic.

3 NSM-Console modules

In earlier versions, NSM-Console’s functionality relied solely on modules. A
module is a wrapper around a previously-installed executable that handles
command-line configuration as well as execution options. These modules are
loaded when the console is started (although a different directory for modules
can be specified with the ‘modload’ command). When each module is run,
the commands specified in the module are performed on the packet capture
file. In this way a large amount of tools can be run against a packet capture
file in an easily configurable and automated fashion.

A module consists of a number of plain-text files (found in the ‘modules’
directory in the distribution tarball) inside the following folder hierarchy:

3.1 NSM-Console module files

For a module with the name ‘banana’, the folder structure is as follows:

> modules/

---> banana.module/
—————— > banana

—————— > description
—————— > info

—————— > defaults

—————— > <support files>

A module is named whatever the directory is called (without the ‘.mod-
ule’), so in this example, this would be the ‘banana’ module. Inside the
banana.module directory, NSM-Console expects to find at least 3 files. In
addition to these files, any other files (such as configuration files or rules for
snort) are included in the directory to make each module as self-contained
as possible.

The banana file contains newline-separated commands that will be exe-
cuted when the module is run. This file is expected to be named the same as
the module name (if the name of the module was ‘rhubarb’, NSM-Console
would expect to find the ‘rhubarb’ file in the directory). This file is called
the command file.

The next file NSM-Console expects is the description file, this file
contains a single line describing what the module does. The console uses this
to describe the module when all modules are listed. It should be succinct and
descriptive. An example for a module using aimsnarf would be: “Extracts
AIM conversations from the packet capture file”.

Since the description file does not provide a very detailed summary of
what the module means and all its options, the info file is required. The
info file is a multi-line plaintext file that normally includes a more in-

depth description, website address and additional information for how to
use a module. For modules that use variables in their command file, it also
provides a description of what each variable means (more about this in the
variables section).

The defaults file, which is optional, provides default values for any
of the variables used in the command file. For example, if the variable
was OUTPUT_FILE, the line in the defaults file would looks something like
OUTPUT_FILE=myoutput.txt. If the OUTPUT_FILE variable was used in the
command file, it would then be replaced by ‘myoutput.txt’. This leads to
our discussion of variables.

3.2 Variables

Variables allow an analyst to have easily configurable modules that can have
their options set on a per-module basis, as well as inheriting some global
options from NSM-Console itself. Each variables is referenced in a bash-like
syntax such as ${VARIABLE_NAME}.

3.2.1 NSM-Console base variables

NSM-Console provides each module the same global options:

PCAP_FILE
PCAP_BASE
MODULE_DIR
MODULE_NAME
OUTPUT_DIR

The PCAP_FILE variable is the full path and filename of the packet cap-
ture file that a user specifies to NSM-Console. This variable is used by most
modules to set which file to read for analysis. In the case of a directory,
NSM-Console will recurse through the directory and attempt to run each
module on each file inside.

The PCAP_BASE variable is the basename of the packet capture file. This
variable is mostly used by modules to determine the name of the output file.
For example, if the full path to the packet capture file was /home/analyzt /pcap/data.pcap,
the PCAP_BASE variable would be data.pcap. This variable is calculated for
each individual file at runtime in the case that PCAP_FILE is a directory.

The MODULE_DIR variable is the name of the currently loaded module
directory. Most modules use this to reference module-specific files. The
default value of this variable is ‘modules’.

The MODULE_NAME variable is the name of the currently executing module.
Again, most modules use this to reference module-specific files and name
their output files. This variable changes for each module.

The OUTPUT_DIR variable is the directory that all NSM-Console module
output is directed to. The default output directory is ${PCAP_BASE}-output.

3.2.2 Module variables

Modules may declare their own variables, which are declared in the command
file. NSM-Console knows about the variables for each module from the
defaults file in the module directory. Once, a variable for a module has
been declared, it can be set by the user in the console. Variables will be
replaced when each module is run.

Variables also support embedding other variables, although only 1 level
of lookups are performed at the time of this writing. For example, a module
might declare the default variable: OUTPUT_FILE=${PCAP_BASE}.out so that
the output filename will retain the name of the packet capture file.

4 NSM-Console commands

NSM-Console modules are designed to be managed by a small set of simple
commands. While NSM-Console itself offers a large number of commands,
this section covers only the most basic usage and most common commands
of NSM-Console.

4.1 file

The file command is used to tell NSM-Console which packet capture file
(or directory of files if a directory is specified) the analysis is going to be
performed on. If the file does not exist, the console will warn the user.

4.2 output
The output directory can be specified by using the output command. By
default the output directory is set to ${PCAP_BASE}-output.

4.3 info

The info command prints additional information about a particular module
to the screen (from the module’s ‘info* file). Normally this would include a
detailed description, website, and information about the module’s variables.

4.4 list

The list command lists all the modules that are currently loaded, as well
as their enabled or disabled state. A [-] means that a module is disabled,
while a [+] means that a module is enabled. The description of each module

(from the module’s description file) is displayed next to the name of each
module.

4.5 toggle

The toggle command is used to toggle modules on and off, in addition ‘all’
can be specified to turn all modules on or ‘none’ can be specified to turn all
modules off. Multiple modules can be toggled by using a space-separated
list. For example: ‘toggle aimsnarf tcpxtract iploc’ will toggle the
aimsnarf, tcpxtract and iploc modules.

4.6 options

The options command is used to list the global and module-specific variables
as well as the commands that will be executed for each module. If no module
is specified, the options command shows only the global variables. When a
module is specified as an argument, in addition to the global variables, the
variables and commands for that module are displayed.

4.7 set

The set command is used to set a module variable. The name of the mod-
ule must be specified as well as the variable name and the new value. For
example, setting the Honeysnap’s HOST_LIST variable is accomplished by
the following command: set honeysnap HOST_LIST 10.0.0.1,10.0.0.2.
Although there are a large number of variables for all the modules in NSM-
Console, the modules are designed to be able to run using the default set-
tings.

4.8 run

Finally, the run command tells NSM-Console to perform analysis on the
packet capture file using all of the enabled modules. Any module not enabled
will be skipped. The output directory as well as directories for each module
will be created for any program output if it does not already exist.

5 Additional features of NSM-Console

In addition to the basic commands used to manage the modules in NSM-
Console, there are a number of built-in utility and tool commands that are
available to make analysis of the packet capture file much easier for the
analyst.

5.1 Categories

As the number of modules grows, toggling multiple modules becomes a
longer task than I originally hoped for. To solve this problem the categories
feature was introduced. Inside the ‘modules’ directory is another directory
named ‘categories’. In this directory are a number of text files named af-
ter a category of network analysis tools, for example, the IDS category file
might include the snort and bro-ids modules. This allows the user to toggle
the category on and off, which in turn enables and disables all the modules
contained inside the category. Categories are designed to be extremely easy
to create and modify.

5.2 Shell commands

In order to provide full shell access to an analyst using NSM-Console, the
exec command was added in order to perform a shell command. For ex-
ample, ‘exec bash’ would start a bash shell, which would return to NSM-
Console when exited.

5.3 Ruby evaluation

In addition to providing shell commands, using the eval command allows
a user to directly evaluate any Ruby statement within NSM-Console. Note
that none of the internal variables or functions are hidden from this function,
making this an extremely power tool for experienced users. For example,
‘eval $tabstrings.each { |t| t.puts; }’ will display all of the strings
in the tabstrings array (which is used for tab-completion).

5.4 Packet printing

While the packet printing feature is not as robust as viewing network traffic
in wireshark or even tcpdump, the print command can serve as a good way
to quickly view specific packets when a quick view of packet data is required.
The print command supports printing connection information only, as well
as displaying the payload data in ascii or hex. For example:

nsm> print -x 11

Filename: /Users/hinmanm/data.pcap

full from 11 to 11

11 1195193092.92338 209.177.146.34 -> 192.168.1.136 TCP 6667 > 50344
Len=128

0010 3a 63 6¢c 61 72 6b 65 2e¢ 66 72 65 65 6e 6f 64 65 :clarke.freenode
0020 2e 6e 65 74 20 50 4f 4e 47 20 63 6¢ 61 72 6b 65 .net.PONG.clarke
0030 2e 66 72 65 65 6e 6f 64 65 2e¢ 6e 65 74 20 3a 4c .freenode.net.:L

The print command also supports ranges as well as comma-separated
values. Some examples of valid ranges are: 1 , * , 2-10 and 1,3-10,15-%

5.5 Payload dumping

While the print command allows a console user to print packet payload
information to stdout, the dump command allows a user to dump binary
payload data into a file. In the event that cryptographic or encoded data
is captured, the analyst can perform analysis on the exported payload data
with other tools.

The dump command supports the same ranges as the print command,
allowing the user to select which ranges of payloads to dump into a file.

5.6 Encoding and decoding

As a wide variety of network data is not transmitted in plain-text, the
encode and decode commands were introduced to help an analyst quickly
translate between different encodings. Here is an example of how these com-
mands are used:

nsm> encode base64 NSM-Console is awesome!

produces:

T1NNLUNvbnNvbGUgaXMgYXd1lc29tZSE=

nsm> decode base64 T1NNLUNvbnNvbGUgaXMgYXd1lc29tZSE=
produces:

NSM-Console is awesome!

There are a variety of encodings and decodings available currently, with
more planned for future releases.

5.7 Aliases

NSM-Console is also designed to allow an analyst to customize their tools
as well as tailor their environment to suit them better. Part of the way
this is accomplished is through the alias command. The alias command
allows a console user to alias any command to be another command. For
example: ‘alias 1s=list‘ will alias the 1list command to ‘1s’. A more
complex example would be: ‘alias serv = exec cat /etc/services |
grep’, which would allow an analyst to use ‘serv 1024’ to search for what
service runs on port 1024.

5.8 The .nsmcrc file

In order to alleviate typing the same alias and set commands every time
NSM-Console is started, NSM-Console will read the .nsmcrc file in a user’s

home directory upon startup, allowed an analyst to specify common aliases
and module options to be set when NSM-Console starts.

6 The future of NSM-Console

As NSM-Console continues to grow and mature, it is hoped that it will
continue to be a valuable tool to any network security analyst looking for
an extensible framework to perform analysis with. Since the project is re-
leased under an open-source license, any community feedback or patches are
encouraged and greatly appreciated.

7 Additional Information

NSM-Console home page
http:/ /writequit.org/projects/nsm-console

NSM-Console trac page
https://trac.security.org.my/hex/wiki/nsm-console

The HeX LiveCD Project
http:/ /rawpacket.org/projects/hex

HeX LiveCD Trac page
https:/ /trac.security.org.my/hex/wiki

